目录
图像
上传图像
DSS Images Other Images
相关文章
Optical and infrared observations of the TypeIIP SN2002hh from days 3 to 397 We present optical and infrared (IR) observations of the TypeII SN2002hhfrom 3 to 397d after explosion. The optical spectroscopic (4-397d) andphotometric (3-278d) data are complemented by spectroscopic (137-381d)and photometric (137-314d) data acquired at IR wavelengths. This is thefirst time L-band spectra have ever been successfully obtained for asupernova (SN) at a distance beyond the Local Group. The VRI lightcurves in the first 40d reveal SN2002hh to be an SNIIP (plateau) - themost common of all core-collapse SNe. SN2002hh is one of the most highlyextinguished SNe ever investigated. To provide a match between itsearly-time spectrum and a coeval spectrum of the TypeIIP SN1999em, aswell as maintaining consistency with KI interstellar absorption, weinvoke a two-component extinction model. One component is due to thecombined effect of the interstellar medium (ISM) of our Milky Way Galaxyand the SN host galaxy, while the other component is due to a `dustpocket' where the grains have a mean size smaller than in the ISM. Theearly-time optical light curves of SNe1999em and 2002hh are generallywell matched, as are the radioactive tails of these two SNe and SN1987A.The late-time similarity of the SN2002hh optical light curves to thoseof SN1987A, together with measurements of the optical/IR luminosity and[FeII]1.257μm emission indicate that 0.07 +/- 0.02Msolarof 56Ni was ejected by SN2002hh. However, during the nebularphase the HKL' luminosities of SN2002hh exhibit a growing excess withrespect to those of SN1987A. We attribute much of this excess to anIR-echo from a pre-existing, dusty circumstellar medium. Based on anIR-echo interpretation of the near-IR (NIR) excess, we deduce that theprogenitor of SN2002hh underwent recent mass-loss of~0.3Msolar. A detailed comparison of the late-time opticaland NIR spectra of SNe1987A and 2002hh is presented. While the overallimpression is one of similarity between the spectra of the two events,there are notable differences. The MgI1.503μm luminosity of SN2002hhis a factor of 2.5 greater than in SN1987A at similar epochs, yet coevalsilicon and calcium lines in SN2002hh are fainter. Interpreting thesedifferences as being due to abundance variations, the overall abundancetrend between SN1987A and 2002hh is not consistent with explosion modelpredictions. It appears that during the burning to intermediate-masselements, the nucleosynthesis did not progress as far as might have beenexpected given the mass of iron ejected. Evidence for mixing in theejecta is presented. Pronounced blueshifts seen in the more isolatedlines are attributed to asymmetry in the ejecta. However, during thetime-span of these observations (~1-yr post-explosion) we find noevidence of dust condensation in the ejecta such as might have beenrevealed by an increasing blueshift and/or attenuation of the red wingsof the emission lines. Nevertheless, the clear detection of firstovertone CO emission by 200d and the reddening trend in (K -L')0 suggest that dust formation in the ejecta may occur atlater epochs. From the [OI] λλ6300, 6364Å doubletluminosity we infer a 16-18Msolar main-sequence progenitorstar. The progenitor of SN2002hh was probably a red supergiant with asubstantial, dusty wind.
| Visual multiples. VIII - 1000 MK types A total of 1000 new classifications are given for stars brighter than B= 8.0 mag in the Aitken double star catalog. The classificationssupplement 865 classifications obtained in 1981 and 1984. Among thenewly discovered stars are 12 new Ap stars, eight Lambda Bootis stars,one Ba II star, and 60 Am stars. A detailed list of the newclassifications is given.
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|