Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

TYC 3353-2359-1


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Random forest automated supervised classification of Hipparcos periodic variable stars
We present an evaluation of the performance of an automatedclassification of the Hipparcos periodic variable stars into 26 types.The sub-sample with the most reliable variability types available in theliterature is used to train supervised algorithms to characterize thetype dependencies on a number of attributes. The most useful attributesevaluated with the random forest methodology include, in decreasingorder of importance, the period, the amplitude, the V-I colour index,the absolute magnitude, the residual around the folded light-curvemodel, the magnitude distribution skewness and the amplitude of thesecond harmonic of the Fourier series model relative to that of thefundamental frequency. Random forests and a multi-stage scheme involvingBayesian network and Gaussian mixture methods lead to statisticallyequivalent results. In standard 10-fold cross-validation (CV)experiments, the rate of correct classification is between 90 and 100per cent, depending on the variability type. The main mis-classificationcases, up to a rate of about 10 per cent, arise due to confusion betweenSPB and ACV blue variables and between eclipsing binaries, ellipsoidalvariables and other variability types. Our training set and thepredicted types for the other Hipparcos periodic stars are availableonline.

Near-infrared (JHK) Photometry of 131 Northern Galactic Classical Cepheids
Near-infrared photometric measurements for 131 Northern GalacticCepheids are presented. The Cepheid light curves are sampled with anaverage of 22 measurements per star fully covering the phase of eachCepheid. The J, H, and K light curves for each Cepheid were uniformlyinterpolated to find the intensity mean magnitudes within each band. Theresults are consistent within ±1% for 26 stars in common withprevious studies. This paper is the first in a projected series of twopapers which will provide additional fundamental data for Cepheids inthe Galaxy, namely, NIR photometry and line-of-sight extinction. In thecourse of this project, 93 additional variables were fortuitouslyobserved within the Cepheid program fields, 82 of which have previouslynot been identified.

uvby-beta Photoelectric Photometry of Cepheid Stars
We present time-series uvby-beta photometry of 41 classical Cepheidstars. A brief discussion of a comparison between the present data andprevious photometric observations is included.

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

Galactic abundance gradients from Cepheids. On the iron abundance gradient around 10-12 kpc
Context: Classical Cepheids are excellent tracers of intermediate-massstars, since their distances can be estimated with very high accuracy.In particular, they can be adopted to trace the chemical evolution ofthe Galactic disk. Aims: Homogeneous iron abundance measurements for 33Galactic Cepheids located in the outer disk together with accuratedistance determinations based on near-infrared photometry are adopted toconstrain the Galactic iron gradient beyond 10 kpc. Methods: Ironabundances were determined using high resolution Cepheid spectracollected with three different observational instruments: ESPaDOnS@CFHT,Narval@TBL and FEROS@2.2m ESO/MPG telescope. Cepheid distances wereestimated using near-infrared (J,H,K-band) period-luminosity relationsand data from SAAO and the 2MASS catalog. Results: The least squaressolution over the entire data set indicates that the iron gradient inthe Galactic disk presents a slope of -0.052±0.003 textrm {dexkpc}-1 in the 5-17 kpc range. However, the change of the ironabundance across the disk seems to be better described by a linearregime inside the solar circle and a flattening of the gradient towardthe outer disk (beyond 10 kpc). In the latter region the iron gradientpresents a shallower slope, i.e. -0.012±0.014 textrm {dexkpc}-1. In the outer disk (10-12 kpc) we also found thatCepheids present an increase in the spread in iron abundance. Currentevidence indicates that the spread in metallicity depends on theGalactocentric longitude. Finally, current data do not support thehypothesis of a discontinuity in the iron gradient at Galactocentricdistances of 10-12 kpc. Conclusions: The occurrence of a spread in ironabundance as a function of the Galactocentric longitude indicates thatlinear radial gradients should be cautiously treated to constrain thechemical evolution across the disk.

Reddenings of FGK supergiants and classical Cepheids from spectroscopic data
Accurate and homogeneous atmospheric parameters(Teff,logg,Vt, [Fe/H]) are derived for 74 FGKnon-variable supergiants from high-resolution, high signal-to-noiseratio, echelle spectra. Extremely high precision for the inferredeffective temperatures (10-40K) is achieved by using the line-depthratio method. The new data are combined with atmospheric values for 164classical Cepheids, observed at 675 different pulsation phases, takenfrom our previously published studies. The derived values are correlatedwith unreddened B - V colours compiled from the literature for theinvestigated stars in order to obtain an empirical relationship of theform (B - V)0 = 57.984 -10.3587(logTeff)2 +1.67572(logTeff)3 - 3.356logg +0.0321Vt + 0.2615[Fe/H] + 0.8833(logg)(logTeff).The expression is used to estimate colour excesses E(B - V) forindividual supergiants and classical Cepheids, with a precision of+/-0.05 mag for supergiants and Cepheids with n = 1-2 spectra, reaching+/-0.025mag for Cepheids with n > 2 spectra, matching uncertaintiesfor the most sophisticated photometric techniques. The reddening scaleis also a close match to the system of space reddenings for Cepheids.The application range is for spectral types F0-K0 and luminosity classesI and II.

Photoelectric observations of Cepheids in UBV(RI)c (Berdnikov, 2008)
This catalog gathers the observation of 894 Cepheids made between 1986to 2004.Observations are listed in alphabetical order of the constellations. Thestandard deviation for every magnitude and color is 0.01mag.This version supersedes the 1997 edition (Cat. )(3 data files).

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Distribution of the Elements in the Galactic Disk
This paper reports on the spectroscopic investigation of 54 Cepheids,deriving parameters and abundances. These Cepheids extend previoussamples by about 35% in number and increase the amount of the Galacticdisk coverage, especially in the direction of l~120deg. Wefind that there exists in the Galactic disk at that longitude and at asolar distance of about 3-4 kpc a region that has enhanced abundances,~+0.2, with respect to the local region. A simple linearfit to all Cepheid data now extant yields a gradientd[Fe/H]/dRG=-0.068+/-0.003 dex kpc-1. Afterconsideration of the spatial abundance inhomogeneities in the sample, weconclude that the best current estimate of the overall gradient isd[Fe/H]/dRG=-0.06 dex kpc-1.

Wer beobachtet mit: BK Aurigae.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Two Period-Radius Relations for Classical Cepheids: Determining the Pulsation Mode and the Distance Scale
Not Available

Cepheiden: was wird beobachtet - was nicht ?
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

A catalog of Cepheid radial velocities measured in 1995-1998 with the correlation spectrometer
We present a catalog of 2444 original radial-velocity measurements for108 Cepheids based on the 1995-1998 observations with the correlationspectrometer. Detailed radial-velocity curves are given for 12 Cepheidsfor the first time.

UVBY beta Photometric Data and Fourier Coefficients for Galactic Population I and Population II Cepheids
Photometric data in the uvby beta system are presented for a sample of98 Population I Cepheids and seven W Virginis or Population II Cepheids.The importance of the Fourier decomposition technique in the study ofthe structure of pulsating stars is stressed. Mean values and Fourierdecomposition coefficients for the V, b - y, m1, and c1 variations arecalculated. Also, mean values of H beta are provided. New times ofmaximum V light are reported for the majority of the stars in thesample. Significant shifts of the light and color curves were found insome Cepheids; these are explained by their period variations. Thesestars are highlighted in the text.

The radii of 62 classical Cepheids
Based on dense series of photoelectric observations and on ourradial-velocity measurements, we calculated the radii of 62 northernCepheids by Balona's method. We derived the following period-radiusrelation: log R = 1.23(+/-0.03) + 0.62(+/-0.03) log P. Our detailedanalysis shows that the distance scale for Cepheids cannot be refinedusing their radii by an independent method which is unrelated to thedistances to young open clusters because of the random and systematicerrors of the Baade-Wesselink technique.

Galactic Interior Motions Derived from HIPPARCOS Proper Motions. I. Young Disk Population
Analyzing Hipparcos proper motions of 1352 O-B5 stars other than theGould belt stars, which are representative of the young disk population,we have found a clear stellar warping motion that is a systematicrotation +3.8 +/- 1.1 km s^-1 kpc^-1 of stars about the axis pointing tothe Galactic center in the sense of increasing the inclination of the Hi warp, and a remarkably large Galactic rotation of (V_0)_O-B5 = 268.7+/- 11.9 km s^-1, compared with the IAU recommendation (V_0 = 220 +/- 20km s^-1), given the Galactocentric distance of the Sun R_0 = 8.5 kpc. Wehave carried out a similar analysis for 170 Hipparcos Cepheids as welland obtained a solution that apparently shows neither the rotation northe shear, other than the Oort differential rotation. The Cepheids arepurely rotating around the Galactic center with the velocity (V_0)_Cep =243.3 +/- 12.0 km s^-1, again larger than the IAU recommendation.However, the solution for the Cepheids, which are considered the sameyoung disk population as the O-B5 stars, seems to be different from thatfor the O-B5 stars. In order to find the above systematic stellar motionas generally as possible, we apply the Ogorodnikov-Milne model to theHipparcos proper motions, and solve for nine kinematic parameters: threecomponents of solar motion, three components of vorticity (rotation),and three components of strain velocity (shear). This paper discussesthe systematic difference in the proper-motion systems between theground-based catalogs and the Hipparcos Catalogue, in order to examineone of the main causes of the large difference between the present (270km s^-1) and previous (220 km s^-1) Galactic rotations.

Monitoring the Evolution of Cepheid Variables
Described here are preliminary results of a pilot project to monitorchanges in the ephemerides of northern hemisphere Cepheid's using anSBIG camera attached to the 0.4-m telescope of the campus obversatory atSaint Mary's University. Epochs of maximum light for fifteen Cepheid'shave been derived using published light curves for each variable astemplates, and the results are being used to update the O-C ephemeridesfor the program stars. Results for BB Her are presented here. Periodchanges for Cepheid variables are demonstrated to be an excellent meansof pinpointing their evolutionary status, as well as for investigatingother peculiarities of the class.

Galactic kinematics of Cepheids from HIPPARCOS proper motions
The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.

Search for resonance effects in long period Cepheids.
Light curves of classical Cepheids with period longer than 8 days havebeen Fourier decomposed with the purpose of studying the characteristicsof high order Fourier parameters, and to detect possible effects ofresonances between pulsation modes other than the well known resonanceat P~10d. The possible effects of two expected resonances have beententatively identified: P_0_/P_1_=3/2 at P_0_~24 d and P_0_/P_3_=3 atP_0_~27d. The identification is not completely certain owing to the poornumber of Cepheids. The limitation could be overcome by observingaccurately other relatively faint Cepheids in our Galaxy, and severalCepheids in nearby galaxies.

Mean radial velocities and binarity of cepheids from the 1987-1995 measurements
Not Available

Rotation curve of the system of classical Cepheids and the distance to the galactic center
Not Available

Catalog of radial velocities for northern Cepheids measured with a correlation spectrometer
A catalog containing 1446 individual radial velocity values for 79 fieldCepheids and three Cepheids in globular clusters, and 32 averaged radialvelocities of the Cepheid Alpha UMi derived from 100 individual velocityparameters is presented. A table of gamma velocities for 30 Cepheidswith sufficiently good coverage of Vr curves is included. Radialvelocity observations of CE Cas A and CF Cas, which are photometricmembers of the open cluster NGC 7790, made it possible to estimate theradial velocity of the cluster (-78.0 km/s).

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Auriga
Ascensió Recta:05h10m40.23s
Declinació:+49°41'15.4"
Magnitud Aparent:9.422
Moviment propi RA:-0.6
Moviment propi Dec:-0.2
B-T magnitude:10.709
V-T magnitude:9.529

Catàlegs i designacions:
Noms Propis   (Edit)
TYCHO-2 2000TYC 3353-2359-1
USNO-A2.0USNO-A2 1350-05429353
HIPHIP 24105

→ Sol·licitar més catàlegs i designacions de VizieR