Contents
Images
Upload your image
DSS Images Other Images
Related articles
Discoveries from a Near-infrared Proper Motion Survey Using Multi-epoch Two Micron All-Sky Survey Data We have conducted a 4030 deg2 near-infrared proper motionsurvey using multi-epoch data from the Two Micron All-Sky Survey(2MASS). We find 2778 proper motion candidates, 647 of which are notlisted in SIMBAD. After comparison to Digitized Sky Survey images, wefind that 107 of our proper motion candidates lack counterparts at B, R,and I bands and are thus 2MASS-only detections. We present results ofspectroscopic follow-up of 188 targets that include the infrared-onlysources along with selected optical-counterpart sources with faintreduced proper motions or interesting colors. We also establish a set ofnear-infrared spectroscopic standards with which to anchor near-infraredclassifications for our objects. Among the discoveries are six youngfield brown dwarfs, five "red L" dwarfs, three L-type subdwarfs, twelveM-type subdwarfs, eight "blue L" dwarfs, and several T dwarfs. Wefurther refine the definitions of these exotic classes to aid futureidentification of similar objects. We examine their kinematics and findthat both the "blue L" and "red L" dwarfs appear to be drawn from arelatively old population. This survey provides a glimpse of the kindsof research that will be possible through time-domain infrared projectssuch as the UKIDSS Large Area Survey, various VISTA surveys, and WISE,and also through z- or y-band enabled, multi-epoch surveys such asPan-STARRS and LSST.Some of the spectroscopic data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership amongthe California Institute of Technology, the University of California,and the National Aeronautics and Space Administration. The Observatorywas made possible by the generous financial support of the W. M. KeckFoundation. Other spectroscopic data were collected at the SubaruTelescope, which is operated by the National Astronomical Observatory ofJapan.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Subdwarf studies. I - UBVRI photometry of NLTT stars UBVRI photometry is presented for a sample of 1656 southern stars,including 1211 that were previously unmeasured, drown from the NLTTproper-motion catalog. The catalog is shown to be a rich source ofsubdwarfs. The normalized ultraviolet excess delta (U - B)0.6,photometric parallax, and interstellar reddening are calculated for eachstar when possible. Photometric parallaxes are compared withtrigonometric parallaxes from the literature. It is found that theformer do not have systematic errors greater than about 25 percent. Inagreement with other studies, the bluest subdwarfs are found at B - V =0.35. The selection of the program stars on the basis of large reducedproper motions restricted subgiant contamination of the sample to about5 percent and increased the discovery fraction of halo stars relative todisk stars. The claim is made here that the sample can be used toinvestigate the abundance distribution of the halo. The sample includesstars with ultraviolet excesses characteristic of disk abundances butwith velocities up to 150 km/s. These are believed to be stars that,quite expectedly, reside in the high-velocity tail of the disk velocitydistribution.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Baleine |
Right ascension: | 01h04m11.35s |
Declination: | -14°35'19.4" |
Apparent magnitude: | 10.662 |
Proper motion RA: | 356.8 |
Proper motion Dec: | -73 |
B-T magnitude: | 11.603 |
V-T magnitude: | 10.74 |
Catalogs and designations:
|