Contents
Images
Upload your image
DSS Images Other Images
Related articles
The Radial Velocity Experiment (rave): Second Data Release We present the second data release of the Radial Velocity Experiment(RAVE), an ambitious spectroscopic survey to measure radial velocitiesand stellar atmosphere parameters (temperature, metallicity, surfacegravity, and rotational velocity) of up to one million stars using the 6dF multi-object spectrograph on the 1.2 m UK Schmidt Telescope of theAnglo-Australian Observatory (AAO). The RAVE program started in 2003,obtaining medium resolution spectra (median R = 7500) in the Ca-tripletregion (8410-8795 Å) for southern hemisphere stars drawn from theTycho-2 and SuperCOSMOS catalogues, in the magnitude range 9 < I <12. Following the first data release, the current release doubles thesample of published radial velocities, now containing 51,829 radialvelocities for 49,327 individual stars observed on 141 nights between2003 April 11 and 2005 March 31. Comparison with external data setsshows that the new data collected since 2004 April 3 show a standarddeviation of 1.3 km s–1, about twice as good as for thefirst data release. For the first time, this data release containsvalues of stellar parameters from 22,407 spectra of 21,121 individualstars. They were derived by a penalized χ2 method usingan extensive grid of synthetic spectra calculated from the latestversion of Kurucz stellar atmosphere models. From comparison withexternal data sets, our conservative estimates of errors of the stellarparameters for a spectrum with an average signal-to-noise ratio (S/N) of~40 are 400 K in temperature, 0.5 dex in gravity, and 0.2 dex inmetallicity. We note however that, for all three stellar parameters, theinternal errors estimated from repeat RAVE observations of 855 stars areat least a factor 2 smaller. We demonstrate that the results show nosystematic offsets if compared to values derived from photometry orcomplementary spectroscopic analyses. The data release includes propermotions from Starnet2, Tycho-2, and UCAC2 catalogs and photometricmeasurements from Tycho-2 USNO-B, DENIS, and 2MASS. The data release canbe accessed via the RAVE Web site: http://www.rave-survey.org andthrough CDS.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5
| The South Galactic Pole - Results from uvby-beta photometry of 572 O-F stars Photometric observations on the uvby-beta system are presented for 572O-F stars within about 20 deg of the South Galactic Pole. Theinterstellar extinction near the pole is found to be zero out to 400 pcfrom the sun, in agreement with the H I maps of Burstein and Heiles(1982). Several evolved and Population II objects are identified.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | ちょうこくしつ座 |
Right ascension: | 00h27m14.65s |
Declination: | -31°02'14.0" |
Apparent magnitude: | 8.684 |
Distance: | 100.604 parsecs |
Proper motion RA: | 26.5 |
Proper motion Dec: | -59 |
B-T magnitude: | 9.273 |
V-T magnitude: | 8.733 |
Catalogs and designations:
|