Contents
Images
Upload your image
DSS Images Other Images
Related articles
Halo Star Streams in the Solar Neighborhood We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.
| Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.
| Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.
| Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.
| A catalogue of [Fe/H] determinations: 1996 edition A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Classification of Population II Stars in the Vilnius Photometric System. I. Methods The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.
| Kinematics of metal-poor stars in the galaxy We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.
| An Abundance Calibration for DDO Photometry of Population-II G and K Giants Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.268..733C&db_key=AST
| Reddening estimation for halo red giants using UVBY photometry Updated uvby observations for a larger sample of metal-deficient redgiants are presented and combined with a select sample of data from theliterature transformed to a common system. Using the reddening maps ofBurstein & Heiles (1982), new absolute magnitudes, distances,metallicities, and reddenings are derived for each star. Themetallicities are determined with a revised calibration of them1, (b-y) diagram based upon comparison to a complilation ofrecent spectrsoscopic abundances transformed to a common system. Thephotometric abundances agree very well with the spectroscopic; thedispersion among the residuals for 58 giants is +/- 0.16 dex. Thedereddened indices are used to show that for red giants with (Fe/H) lessthan -1.5, there is a well-defined relation in the c0,(b-y)0 diagram which exhibits only a weak dependence uponmetallicity. Use of the standard relations allows one to obtainreddening estimates for normal halo field giants and globular clustersin the appropriate metallicity range.
| DDO metallicity calibration for metal-deficient red giants and the disk-halo transition DDO abundance estimates for metal-deficient field red giants from thesurvey by Norris et al., (1985) are compared with high dispersionspectroscopic abundances and recalibrated uvby photometry. The DDOabundances are shown to deviate from the standard system by an amountwhich is metallicity dependent, i.e., a simple offset cannot transformthe DDO data to the spectroscopic system. A recalibration of the DDOphotometry demonstrates that the old DDO calibration provides reliable(Fe/H) estimates near -0.8 and -2.3, but systematically underestimatesthe metallicity of stars near -1.2 by about 0.5 dex. Reanalysis of thered giant sample of Norris et al. leads to a metallicity distributionmuch closer to that of the globular clusters while significantlydecreasing the fracion of metal-weak disk stars. A possible explanationfor origin of the discrepancy is that the clusters of intermediate(Fe/H) used in the DDO calibration are not representative of the fieldstars at the same (Fe/H).
| The abundance of lithium in metal-poor subgiant stars We have determined lithium abundances for a sample of 79 halo subgiants.The subgiant candidates were identified using uvby photometry fromseveral catalogs of metal-poor stars. The basic data werehigh-resolution, low-noise coude spectra in the 6700 A spectral region.Abundances of iron and calcium, derived from one Ca I and several Fe Ilines in our spectra, provided a metallicity discriminant for the starsin our sample. The subgiants with temperatures between 5500 and 4900 Kshow a steady decline of lithium abundance with advancing subgiantposition (and decreasing temperature). The observed trend is inqualitative agreement with recent theoretical models of lithium dilutionin metal-poor stars, especially if main-sequence diffusion is included.The initial lithium abundances in metal-poor stars may have beenslightly larger than that exhibited by stars near the main-sequenceturnoff. For stars with temperatures below 4900 K, the models predict nofurther dilution, but observed lithium abundances continue to declinewith decreasing temperature, indicating further lithium destruction onthe giant branch of metal-poor stars. In all postdilution subgiants, theobserved lithium abundances show more scatter than do stars at themain-sequence turnoff, suggesting variations in the main-sequencelithium destruction below the observable surface layers.
| Calcium abundances in atmospheres of 43 G and K giants Not Available
| Determination of effective temperatures and surface gravities of metal-deficient K-G giants in the Vilnius photometric system Not Available
| Three-dimensional classification of 78 metal-deficient giants in the Vinius photometric system Not Available
| The kinematics of halo red giants The present 337 radial velocities were obtained with typical accuraciesof 0.7 cm km/sec for 85 metal-poor field red giants, selected from thekinematically unbiased samples of Bond (1980) and Bidelman and MacConnel(1973). The multiply-observed stars suggest the field halo binaryfraction exceeds 10 percent. Using these velocities and those publishedby others, a sample of 174 red giants with Fe/H of not more than -1.5 isobtained. Their mean motion with respect to the local standard of restis -206 + or - 23 km/sec, and the velocity dispersions are sigma (R) of154 + or - 18 km/sec, sigma(theta) of 102 + or - 27 km/sec, andsigma(phi) of 107 + or - 15 km/sec. Using photometrically derivedabsolute magnitudes and published proper motions, orbital eccentricitiesare computed for 72 stars not already considered in a similar study ofsouthern stars by Norris et al. (1985). A few stars with e of less than0.4 are found.
| Photoelectric photometry of metal-deficient giants of spectral types G and K in the Vilnius system Not Available
| Catalogue of Metal-Deficient F-Stars to M-Stars - Part One - Stars Classified Spectroscopically - Supplement One Not Available
| Metal-Deficient Giants in the Galactic Field - Catalogue and Some Physical Parameters Not Available
| /V - R/ observations and effective temperatures for extremely metal-deficient red giants Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1983PASP...95...27S&db_key=AST
| Extremely metal-deficient red giants. I - A new objective-prism, photometric, and radial-velocity survey Results of an extensive objective-prism survey to detect extremelymetal-deficient red giants and a subsequent investigation of thephotometric and radial velocity properties of the newly discovered starsare presented. The 132 red giants with Fe/H abundance ratios less thanor equal to -1.5 discovered in the present objective-prism survey on a10-deg prism down to B magnitudes of 11.5, and by previousobjective-prism and other surveys, are listed, together with results ofradial velocity and photometric measurements. Examination of theStromgren m1 index calibrated against high-resolution spectroscopicdeterminations of the Fe-H abundance ratio indicates that population IIIfield giants with abundance ratios less than -3 are extremely rare. TheStromgren c1 index is used as an indicator of surface gravity andanomalous CH strengths, resulting in the identification of field redhorizontal-branch stars, field asymptotic-branch giants and subgiants.Radial velocities obtained for about half the stars reveal thatessentially all of them have halo motions, and that the incidence ofspectroscopic binaries is very low.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | おとめ座 |
Right ascension: | 13h04m06.59s |
Declination: | +11°26'15.8" |
Apparent magnitude: | 9.887 |
Proper motion RA: | 3.7 |
Proper motion Dec: | -54 |
B-T magnitude: | 11.141 |
V-T magnitude: | 9.991 |
Catalogs and designations:
|