Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 18803 (51 Arietis)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Spectropolarimetry of the 3.4 μm Absorption Feature in NGC 1068
In order to test the silicate-core/organic-mantle model of galacticinterstellar dust, we have performed spectropolarimetry of the 3.4 μmCH bond stretch that is characteristic of aliphatic hydrocarbons, usingthe nucleus of the Seyfert 2 galaxy, NGC 1068, as a bright, dustybackground source. Polarization calculations show that if the grains inNGC 1068 had the properties assigned by the core-mantle model to dust inthe Galactic diffuse interstellar medium (ISM), they would cause adetectable rise in polarization over the 3.4 μm feature. No suchincrease is observed. We discuss modifications to the basic core-mantlemodel, such as changes in grain size or the existence of additionalnonhydrocarbon aligned grain populations, that could better fit theobservational evidence. However, we emphasize that the absence ofpolarization over the 3.4 μm band in NGC 1068-and, indeed, in everyline of sight examined to date-can be readily explained by a populationof small, unaligned carbonaceous grains with no physical connection tothe silicates.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Angular Differential Imaging: A Powerful High-Contrast Imaging Technique
Angular differential imaging is a high-contrast imaging technique thatreduces quasistatic speckle noise and facilitates the detection ofnearby companions. A sequence of images is acquired with analtitude/azimuth telescope while the instrument field derotator isswitched off. This keeps the instrument and telescope optics aligned andallows the field of view to rotate with respect to the instrument. Foreach image, a reference point-spread function (PSF) is constructed fromother appropriately selected images of the same sequence and subtractedto remove quasistatic PSF structure. All residual images are thenrotated to align the field and are combined. Observed performances arereported for Gemini North data. It is shown that quasistatic PSF noisecan be reduced by a factor ~5 for each image subtraction. Thecombination of all residuals then provides an additional gain of theorder of the square root of the total number of acquired images. A totalspeckle noise attenuation of 20-50 is obtained for a 1 hr long observingsequence compared to a single 30 s exposure. A PSF noise attenuation of100 was achieved for a 2 hr long sequence of images of Vega, reaching a5 σ contrast of 20 mag for separations greater than 8". For a 30minute long sequence, ADI achieves signal-to-noise ratios 30 timesbetter than a classical observation technique. The ADI technique can beused with currently available instruments to search for~1MJup exoplanets with orbits of radii between 50 and 300 AUaround nearby young stars. The possibility of combining the techniquewith other high-contrast imaging methods is briefly discussed.Based on observations obtained at the Gemini Observatory, which isoperated by the Association of Universities for Research in Astronomy,Inc., under a cooperative agreement with the NSF on behalf of the Geminipartnership: the National Science Foundation (United States), theParticle Physics and Astronomy Research Council (United Kingdom), theNational Research Council (Canada), CONICYT (Chile), the AustralianResearch Council (Australia), CNPq (Brazil), and CONICET (Argentina).

Synthetic Lick Indices and Detection of α-enhanced Stars. III. F, G, and K Stars with [Fe/H] > 0.00
A sample of 119 F, G, and K solar neighborhood stars, selected under thecondition [Fe/H]>0.00, is investigated in order to detect which ofthem, if any, present α-enhanced characteristics. According to thekinematics, the sample represents stars of the thin-disk component ofthe Galaxy. The search of α-enhanced characteristics is performedby adopting an already tested procedure that does not require previousknowledge of the stellar main atmospheric parameters. The analysis isbased on the comparison of spectral indices in the Lick IDS system,coming from different observational data sets, with synthetic onescomputed with solar-scaled abundances and with α-elementenhancement. The main result of the analysis is the extreme paucity(likely just one in 119) of α-enhanced stars in our sample, thussuggesting [α/Fe]=0.0 for thin-disk stars with [Fe/H]>0.00.This result, which is in agreement with the standard evolutionarypicture of the disk of the Galaxy, is compared with recent results fromhigh-resolution analysis reported in the literature. The role of theatmospheric parameter assumptions in the analysis of high-resolutionspectroscopic data is discussed, and a possible explanation ofdiscrepant results about α-enhancement for stars with[Fe/H]>0.00 is presented.

Kinematics, ages and metallicities for F- and G-type stars in the solar neighbourhood
A new metallicity distribution and an age-metallicity relation arepresented for 437 nearby F and G turn-off and sub-giant stars selectedfrom radial velocity data of Nidever et al. Photometric metallicitiesare derived from uvby- Hβ photometry, and the stellar ages from theisochrones of Bergbusch & VandenBerg as transformed to uvbyphotometry using the methods of Clem et al.The X (stellar population) criterion of Schuster et al., which combinesboth kinematic and metallicity information, provides 22 thick-discstars. σW= 32 +/- 5 km s-1,= 154 +/- 6 km s-1 and<[M/H]>=-0.55 +/- 0.03 dex for these thick-disc stars, which is inagreement with values from previous studies of the thick disc.α-element abundances which are available for some of thesethick-disc stars show the typical α-element signatures of thethick disc, supporting the classification procedure based on the Xcriterion.Both the scatter in metallicity at a given age and the presence of old,metal-rich stars in the age-metallicity relation make it difficult todecide whether or not an age-metallicity relation exists for the olderthin-disc stars. For ages greater than 3 Gyr, our results agree with theother recent studies that there is almost no correlation between age andmetallicity, Δ([M/Fe])/Δ(age) =-0.01 +/- 0.005 dexGyr-1. For the 22 thick-disc stars there is a range in agesof 7-8 Gyr, but again almost no correlation between age and metallicity.For the subset of main-sequence stars with extra-solar planets, theage-metallicity relation is very similar to that of the total sample,very flat, the main difference being that these stars are mostlymetal-rich, [M/H]>~-0.2 dex. However, two of these stars have[M/H]~-0.6 dex and have been classified as thick-disc stars. As for thetotal sample, the range in ages for these stars with extra-solarplanetary systems is considerable with a nearly uniform distributionover 3 <~ age <~ 13 Gyr.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

Sodium abundances in nearby disk stars
We present sodium abundances for a sample of nearby stars. All resultshave been derived from NLTE statistical equilibrium calculations. Theinfluence of collisional interactions with electrons and hydrogen atomsis evaluated by comparison of the solar spectrum with very precise fitsto the Na I line cores. The NLTE effects are more pronounced inmetal-poor stars since the statistical equilibrium is dominated bycollisions of which at least the electronic component is substantiallyreduced. The resulting influence on the determination of sodiumabundances is in a direction opposite to that found previously for Mgand Al. The NLTE corrections are about -0.1 in thick-disk stars with[Fe/H] ˜-0.6. Our [Na/Fe] abundance ratios are about solar forthick- and thin-disk stars. The increase in [Na/Fe] as a function of[Fe/H] for metal-rich stars found by Edvardsson et al. (\cite{EAG93}) isconfirmed. Our results suggest that sodium yields increase with themetallicity, and quite large amounts of sodium may be produced by AGBstars. We find that [Na/Fe] ratios, together with either [Mg/Fe] ratio,kinematic data or stellar evolutionary ages, make possible theindividual discrimination between thin- and thick-disk membership.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.Tables \ref{table2} and \ref{table3} are only available in electronicform at http://www.edpsciences.org

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

The ELODIE survey for northern extra-solar planets. I. Six new extra-solar planet candidates
Precise radial-velocity observations at Haute-Provence Observatory (OHP,France) with the ELODIE echelle spectrograph have been undertaken since1994. In addition to several discoveries described elsewhere, includingand following that of 51 Peg b, they reveal new sub-stellar companionswith essentially moderate to long periods. We report here about suchcompanions orbiting five solar-type stars (HD 8574,HD 23596, HD 33636, HD50554, HD 106252) and one sub-giant star(HD 190228). The companion of HD8574 has an intermediate period of 227.55 days and asemi-major axis of 0.77 AU. All other companions have long periods,exceeding 3 years, and consequently their semi-major axes are around orabove 2 AU. The detected companions have minimum masses m2sin i ranging from slightly more than 2 MJup to 10.6MJup. These additional objects reinforce the conclusion thatmost planetary companions have masses lower than 5 MJup butwith a tail of the mass distribution going up above 15 MJup.The orbits are all eccentric and 4 out of 6 have an eccentricity of theorder of 0.5. Four stars exhibit solar metallicity, one is metal-richand one metal-poor. With 6 new extra-solar planet candidates discovered,increasing their total known to-date number to 115, the ELODIE PlanetSearch Survey yield is currently 18. We emphasize that 3 out of the 6companions could in principle be resolved by diffraction-limited imagingon 8 m-class telescopes depending on the achievable contrast, andtherefore be primary targets for first attempts of extra-solar planetdirect imaging.Based on observations made at the Haute-Provence Observatory (operatedby French CNRS), the 1.2-m Euler swiss telescope at ESO-La SillaObservatory (Chile) and the 1.52-m ESO telescope also at La SillaObservatory.The ELODIE measurements discussed in this paper are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/1039Appendix A is only available in electronic form athttp://www.edpsciences.org

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

Spectroscopic Determination of Stellar Atmospheric Parameters: Application to Mid-F through Early-K Dwarfs and Subgiants
Takeda et al.'s (2002, PASJ, 54, 451) method for the spectroscopicdetermination of stellar atmospheric parameters (Teff, logg,vt, and [Fe/H]) from the equivalent widths of Fe I and Fe IIlines was applied to 32 dwarfs/subgiants of mid-F through early-K typesbased on high-quality echelle spectra obtained at Okayama AstrophysicalObservatory, for the purpose of examining the numerical performance ofthis technique as well as the precision of the results. The solutions ofthe parameters were confirmed to successfully converge, except for a fewcases (e.g., for lower temperature and lower metallicity stars) wherethe microturbulent velocity could not be well determined. A comparisonof the present results with the literature values, especially those ofFuhrmann (1998, AAA070.155.024), revealed that the agreement is mostlysatisfactory, though a systematic tendency appears to exist that ourmethod yields slightly lower (i.e., by ˜ 100 K) Teffvalues. The results are further discussed in relation to the stellarfundamental parameters (mass, luminosity, etc.), while referring to theHipparcos parallaxes or theoretical stellar evolutionary tracks.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Late-type members of young stellar kinematic groups - I. Single stars
This is the first paper of a series aimed at studying the properties oflate-type members of young stellar kinematic groups. We concentrate ourstudy on classical young moving groups such as the Local Association(Pleiades moving group, 20-150Myr), IC 2391 supercluster (35Myr), UrsaMajor group (Sirius supercluster, 300Myr), and Hyades supercluster(600Myr), as well as on recently identified groups such as the Castormoving group (200Myr). In this paper we compile a preliminary list ofsingle late-type possible members of some of these young stellarkinematic groups. Stars are selected from previously established membersof stellar kinematic groups based on photometric and kinematicproperties as well as from candidates based on other criteria such astheir level of chromospheric activity, rotation rate and lithiumabundance. Precise measurements of proper motions and parallaxes takenfrom the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, andpublished radial velocity measurements are used to calculate theGalactic space motions (U, V, W) and to apply Eggen's kinematic criteriain order to determine the membership of the selected stars to thedifferent groups. Additional criteria using age-dating methods forlate-type stars will be applied in forthcoming papers of this series. Afurther study of the list of stars compiled here could lead to a betterunderstanding of the chromospheric activity and their age evolution, aswell as of the star formation history in the solar neighbourhood. Inaddition, these stars are also potential search targets for directimaging detection of substellar companions.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

Detection of Optical Circular Polarization in the Herbig Ae Star WW Vul
UBVRI observations of circular polarization in WW Vul are presented. Apositive polarization of ~0.1% was detected with a signal-to-noise ratiofrom 3 to 5 in each of the bands and more than 5 when averaged over allfive bands. This observed polarization roughly corresponds to a 1%circular polarization of the radiation scattered in a circumstellardisk, which is most likely attributable to the significant alignment ofscattering nonspherical dust grains. Since grain alignment is possibleonly in a magnetic field, this result provides circumstantial evidencefor the existence of a magnetic field in the circumstellar disk of WWVul.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

The ROSAT all-sky survey catalogue of the nearby stars
We present X-ray data for all entries of the Third Catalogue of NearbyStars \cite[(Gliese & Jahreiss 1991)]{gli91} that have been detectedas X-ray sources in the ROSAT all-sky survey. The catalogue contains1252 entries yielding an average detection rate of 32.9 percent. Inaddition to count rates, source detection parameters, hardness ratios,and X-ray fluxes we also list X-ray luminosities derived from Hipparcosparallaxes. Catalogue also available at CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Nearby stars of the Galactic disk and halo
Model atmosphere analyses of echelle spectra of some fifty nearby F- andG-type stars are presented. The sample is confined to the main-sequence,turnoff and subgiant region, regardless of the metal abundance. On thebase of these data, spectroscopic parallaxes are calculated and comparedto the Hipparcos astrometry to explore the reliability of the derivedstellar parameters, notably the surface gravity and metal abundancescale. The spectroscopic distance scale is found in good agreement withthe Hipparcos parallaxes and is characterized by a 5% rms uncertainty.The results suggest a precision in log g of ~ 0.1 dex, and 0.05-0.10 dexfor the metallicity. There is also reasonable evidence for thespectroscopic effective temperature scale to be free of systematicerrors; typical uncertainties are assessed to ~ 80 K. The basicspectroscopic parameters are supplemented by data for themicroturbulence velocities, the projected rotational velocities, stellarradii and alpha -enhancement abundances, the latter represented by theelement magnesium. Stellar masses are also given, though many areprobably subject to small adjustments (typically 5%) in forthcominganalyses. The well-defined distance correlation is also demonstrated tobe an efficient means for an identification of spectroscopic binaries.The results are discussed in terms of a spectroscopically establisheddistance scale, the sites of the stellar populations in the[Mg/H]-[Fe/Mg] plane, a timescale for the Galactic thin disk, and thepotential of future Teff-log g Kiel diagrams for a precisedetermination of Galactic globular clusters ages. Based on observationsat the German Spanish Astronomical Center, Calar Alto, Spain.

The polarimetric nature of HD 108
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1998MNRAS.295..423F&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:おひつじ座
Right ascension:03h02m26.03s
Declination:+26°36'33.3"
Apparent magnitude:6.633
Distance:21.164 parsecs
Proper motion RA:232.8
Proper motion Dec:-167.9
B-T magnitude:7.491
V-T magnitude:6.704

Catalogs and designations:
Proper Names51 Arietis
  (Edit)
HD 1989HD 18803
TYCHO-2 2000TYC 1790-948-1
USNO-A2.0USNO-A2 1125-00976860
HIPHIP 14150

→ Request more catalogs and designations from VizieR